Quantifying the Role That Terrestrial Ecosystems Play in Earth's Climate

Abigail L.S. Swann
Department of Atmospheric Sciences
Department of Biology
University of Washington

Think like a tree

Think like a tree

Think like a tree: Carbon in, water out

CO₂ has multiple effects

Radiative:

Physiological:

∆ Temperature (°C)

Some warming just from stomata closing

Up to 20% of the warming w/CO₂ is due to plants!

Up to 20% of the warming w/CO₂ is due to plants!

Radiative:

Physiological:

Plant responses are *very uncertian* => typically not accounted for in uncertianty in temperature (drought, etc) under future climate

Some atmospheric variables respond strongly to plants: About *half* of RH change is from plants closing stomata

Tropical Precipitation has a big signal from plants! And it's all local to each continent, not due to circulation

Temperature response to a change in surface albedo of 0.1

Feedback from the atmosphere is large!

Take home points

- Plant responses to climate can have a big impact on surface climate but are highly uncertian
- Plants impact many aspects of physical surface cliamte

 Baises in land surface properties (either prescribed or varying) can impact surface climate both directly and through atmospheric feedbacks